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e Introduction : evidence afispersive Alfvén wavem the solar wind
and the terrestrial magnetosheath and of the sigmafuroherent structures

e Minimal model:Hall-MHD
Parametric instabilities
Specificity of the dispersive casaodulational instabilities
leading tosoliton formation

» Long-wave asymptotic equation for AW: the DNLS eqoati
An integrable equation with
chaotic propertiem the presence of forcing

 Evidence ofilamentary structures in the magnetosheath
A possible origin: AW transverse instabilities
An envelope model
Direct simulations of filamentation in 3D Hall-MHD

 Filamentation indensity channelgnore robust and exists in large domains
of parameter space

* Investigation of the influence efandau damping



Magnetosheath: transition region between
the solar wind and the terrestrial

/ Magn{tusheam/ / magnetosphere (limited by the bow shock)
Magnetopause

Cusp Solar wind: flow of collisionless magnetized
Magnetotail plasma originating from the expansion of the
o —rﬁhﬁ_‘ solar corona. It meets the_nelghl_)orhood Qf
asmashect T the earth with a supersonic relative velocity
."’ (200 km/s < v <900 km/s) leading to a shock

7 oo > i
e, Neutral point ~~ wave (bow shock).

Solar

»

“Wind

_\\' Plasmasphere Magnetosphere: region occupied by the
/ R dipolar terrestrial magnetic distorted by
Bow Shock the solar wind. Its external limit is the

\ \ magnetopause (interface of magnetic
fields of different natures).

Quasi-perpendicular shock: when the angle between the interplanetary magnetic field and the normal
shock is 45%< < 90° the shock front is well defined, its thickness is of the order of the ion Larmor radius.

Downstream of the shock, magnetic fluctuations B/ B, » 1/10

Source of the fluctuations: ion-temperature anisotropy T, >T |
(produced at the bow shock and at thé magnetopause).

Mechanism to relax this anisotropy: Anisotropic lon Cyclotron (ACI) ( <1 or~ 1) or mirror (larger ) instability.

ACI dominantly unstable modes: parallel-propagating Alfvén waves with frequency comparable to but smaller
than ion gyrofrequency. Resonance interaction of ACI waves or mirror modes with ion gyromotion

reduces ion perpendicular energy.



Quasi-monochromatic dispersive Alfvén waves areroomnly
observed in the solar wind and the magnetosheath

Observations by CLUSTER satellites downstream the quasi-perpendicular shock
[Alexandrova et al., J. Geophys. Res. 109, A05207 (2004); 111, A12208 (2006)]

Presence of almost monochromatic left-hand circularly polarized Alfvén waves
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Space plasmas such as the solar wind

10-2F
aiir ] or the magnetosheath are turbulent
001 010 e 10.00 magnetized plasmas with essentially
f (Hz .
Magnetic energy spectrum in the magnetosheath no CO”ISIOnS.

downstream of the bow shock
(Alexandrova et al., JGR, 2006).

Observed cascade extends beyond

_ the ion Larmor radius: kinetic effects
3 play a significant role.
w | Here identified as mirror modes using k-filtering technique:
modes with essentially zero frequency in the plasma frame
A I‘(‘:p 10 .
Magnetic energy spectrum in the magnetosheath Another issue:

close to the magnetopause (Sahraoui et al., PRL 2006)
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Solar wind turbulent spectrum
(Alexandrova et al., 2007)

Formation and evolution of small-scale

coherent structures (filaments, shocklets,
magnetosonic solitons, magnetic holes)
observed in various spatial environments :

Typical length scale of the structures:
a few ion Larmor radii.



The Alfvén wave cascade develops preferentially perpendicularly to

the ambient magnetic field.

Assuming frequencies remain relatively small in comparison with

the ion gyrofrequency, the dynamics should be dominated by

Kinetic Alfvén waves (and slow modes, but these ones are highly dissipative).

KAWSs have been clearly identified using k-filtering technique in the cusp region
(Sahraoui et al. AIP, 2007).
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Another medium where KAWSs play a fundamental role is the solar corona,
where they are believed to mediate the conversion of large-scale modes
into heat.



Linear stability andhonlinear dynamics of parallel Alfvén waweas
extensively studied. This will be rapidly reviewadcontexts where
the dispersive effect of theall termis important.

In a second part, special attention will be paittansverser
filamentationinstability, that provides a mechanism to concdatra
magnetic energy intmagnetic filamentparallel to the ambient

field.



One fluid model
- Scales >> ion Larmor radius
- m
Hall-MHD equations Electron inertia neglected -m?
Landau dampling neglected ]
Temperature anisotropy neglected
Not valid for very oblique propagation: FLR needed

Te
< 3 _<< T

3 |
p(Ou+u-Vu)=—Vp' +(Vxb)xb
y
1 1
Ob—-V x(uxb)=—-——V x ((be) xb)
AL p ,
Hall term
V:-b=0
q_ < o= _Bo - L — ¢ _ ¢4
B = ) CA = Jgpoe = 1 R; = i where d; = el 7

velocity unit: Alfvén speed

length unit:ion inertial length
Take R=1 m 0 unition gyroperiod
density unitiequilibrium density
Magnetic field unitambient field



Exact solution: Alfvén wave propagating along the ambient field (taken along the x-axis)

; i Y I ff-;"'—' f
by — oib, = —; (wy, — otu,) = Bl fE—wt)
b, =p=1, wu;=0.

2 2
Dispersion relation for oy ok o - k
forward propagation: 2R, | R, R,

Choosing k > 0, @ = =x1 for right-hand or left-hand polarization respectively.



Dispersion relation w(k) for parallel-propagating modes
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Wavenumber k

LH Alfvén waves identify with ion-cyclotron waves for w = €2;.

In the high-frequency (small-wavelength) limit, RH Alfvén waves identify with whistler
modes:

RH Alfvén Hall-MHD for .is.gd?‘ >1 — w A‘.QCQEL,_/L;.:;ER

~ whistler EMHD for kgdi < 1, where d. = ¢/wype

In the non-dispersive limit (k/R; — 0) the two modes become a shear-Alfvén branch
(coinciding with a magnetosonic branch).

Hall-MHD extends MHD to frequencies €2 =, £2;, with still £2 < €),.



Instabilities == nonlinear effects :

— small scale formation = heating of the plasma
or

— formation of solitary structures

In order to distinguish between the different possibilities it is useful to study separately
the finite wavelength perturbations and the long wavelength ones. In the latter case two
different situations lead to asymptotic reductions: the long-wave limit (dispersion comparable
to nonlinearity) and the situation of an amplitude modulation (finite dispersion, small amplitude
limit).



General dispersion relation:

Linearization of the primitive MHD equations about an Alfvén wave of wavenumber k& and

amplitude by (not restricted to be small), yields the dispersion relation
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Ay = (w+Q)° = [kiK}Q—%(wiﬂ)[kiKﬁ

Cp = k(k+K)— %Fs(w + Q) (k + K)
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Following Wong and Goldstein (JGR 91, 5617 (1986)), the instability is said modulational
when it affects wave numbers K' < k (not necessarily asymptotically small), and decay when

K > k.



Longitudinal dynamics of SMALL-AMPLITUDE waves

(kz—wt)
Pump wave : e’ :

Side-band waves : e![(FEK)z—(wxt)]
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Figu re 3: decay (a), modulational (b), long-wavelength modulational (c) instabilities (for RH polarized
pump 3 = 2.7).

(a) Decay instability (forward Alfvén wave — forward sound wave + backward Alfvén
wave): unstable wavenumbers K' > k.

(b) Modulation instability: unstable wavenumbers K < k.

(c) Long-wavelength modulational instability extends to K = 0.
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Flgu re 4: Longitudinal instability ranges for a small-amplitude right-hand (a) or left-hand (b) polarized
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Numerical resolution of the dispersion relation (1) for a carrier of small amplitude by ~ € B

shows that for right-hand polarization the instability is modulational for 3 > 1-‘;‘3}! and of decay
type for 3 < L‘:i,._., where v,;, = w/k is the phase velocity of the Alfvén wave. For left-hand

2

or» While modulational and decay instabilities coexist

polarization, the wave is stable for 3 > v
for 3 < 7, (Fig. 4).

Note that, using Whitham formalism, one finds that waves are stabilized at large amplitude
(Miglhus, JPP 16, 321 (1976)).



. Nonlinear dynamics of long wavelength Alfvén waves

Long waves for which the dispersion is comparable to the nonlinearity are amenable to
a reductive perturbative expansion. In the context of Alfvén waves propagating along an
ambient magnetic field, due to the equality of the phase velocity of the Alfvén wave and of
the speed of sound in the zero-dispersion limit, the latter asymptotics does not lead to the
canonical Korteweg-de Vries equation but to the so-called “derivative nonlinear Schrodinger”
(DNLS) equation for the two components of the magnetic field transverse to the propagation
(Mjglhus, J. Plasma Physics 16, 321 (1976), Mio et al. J. Phys. Soc. Japan 41, 265 (1976), Kennel et al.
Phys. Fluids 31, 1949 (1988)). This approach concentrates on large-scale phenomena and neglects
counterpropagating waves.



Ill.a Derivation of the multi-dimensional DNLS equation

We define the stretched variables £ = e(x — t), n = 63’;21{, (= €322 and 7 = €2t and expand
p=1+epi+epr++epg- - (2)
Up = €Uzy + Eguxz + EB'T_E-I-S + ... (3)
by =1+ €bry + € bry + € by + - - - (4)
u = Elf’rz[ul + eug + E2u3 + ) (5)
b=e"2(by + by + “ba+ - - ). (6)
At order €*/2, we have
Feuy + degby = 0. (7)

Equation (7) implies that the fluctuating parts (denoted by tildes) satisfy

] = —by. (8)

It is possible at this level to introduce mean (averaged over the £ variable) transverse fields which can be shown
to obey the reduced MHD equations. In the following, this coupling is ignored.



At order Eﬂ, we obtain
_a.fﬁ'l + B.fﬂxl - a?j'ﬁyl F Bcﬂ'zl =0
—:‘_':JEEJ:] + Optiy1 + detizy = 0
T2
. _ ]
Ie (—tiz1 + BP1 + %n =0
Bebp + Opby1 + Ocbaq = 0.
Using Eq. (8) we get
Béa.rl + '5'?'.!'5‘-5;1 + acgzl =0

Defining 9, = ﬁé + idy, Egs. (9} then rewrite

aﬁ{_.ﬁl + Ugi + Srl} =0



At order /2, we obtain
A:by — ¢ (b + fig) + b1 Ieby + I (51{”&3;1 + 53;1]') + %}551 = 0. (15)
Similarly, the equation for 1 leads to
drty — Jg(tg + by) + e (51[;51 — Uzl — Erl])
+(p1 — tigy — byp1)Oeby + 31 (Bp1 + bey + q] =0 (16)

Here the overbar means average over the longitudinal variable. The solvability condition for eqs. (15) and (16)
leads to

Orb1 + ¢ (L‘—% + i1 + 5.,-1351) + i—% + Tt + bar1)8eb

|b1|?

1 L )
—§f'_‘i'J_ (.ﬂpl + b1 + T) -+ by =0, (17)

which generalizes the usual DNLS equation by the presence of coupling to longitudinal mean fields. While, to
leading order, the fluctuating fields entering eq. (17) have been determined by the equations obtained at order
62, the computation of the mean fields requires to push the expansion to order €. Defining 8 = p — by, we get

_ 1 - -
9-51 + 5 [ (9L (b1 (i1 = 31)) + e ] =0 (18)



and

1 oo g .
Ortiz1 +5 [—(01 (br(ber + 1)) +ec] =0. (19)

Eliminating 51 and .1, by using eqs. (11) and (14), using the divergenceless conditions for b in order to simplify
eq. (17), and dropping the subscripts, one finally gets

. i -
B-b + O (—bP FE M —5)!:-) —501P + 5 0gb =0
s i s
Obs + 5 (BJ_b + c.c.) =0 (20)
8F=D (21)
1 o
Oty = - (ai(ap} e ::'..C..) (22)
_ = o (B2
Ay [ @+ B)bs+ B+ ] =0. (23)

where P = ol o (2b, + 6|2 — (|B|2)).
For localized waves (Mjglus & Wyller '86, '88):
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3
Bebs + 5(81b+01b") =0

i () i
@J_[|b|2 + 2bz) + {’_R-ag'fb =40



I1l.b Properties of the DNLS equation in 1D

In 1D the mean fields are identically zero and the equation reads

i
2R,
which is integrable by inverse scattering (Kaup and Newell, J. Math. Physics, 19, 798 (1978)).

a-b + e (|b*b) = 0 (24)

1
et + g5

(i) Modulational stability of a circularly polarized wave
The DNLS equation also admits an exact solution in the form of circularly polarized Alfvén
waves b = bpe iR —wT)

Linearization of the DNLS equation (24) about the above solution leads to the dispersion
relation

2 2 -2 2 1
a2 ok _ b0 o K _K 3akby 00 (25
i{Ri—i_Q(l—ﬁ]j +(Rf 4Rf+4R¢{1—ﬁ}+1‘3{1—5}2} )
Equation (25) predicts a modulational instability for right-hand (left-hand) polarized waves
25 2R
when 3 > 1+ bﬂﬁ“ (respectively 3 < 1 — Ej“)

On the primitive MHD equaticons, in the case of right-hand polarization, only the decay instability is present

bn R . . ba R, . . .
for 3 < 1. Forl < 3 <1+ Gﬂc?’ the wave is stable, while for 7 > 1 + G;lkz it is modulationally unstable. In



)
oL . . A . - bR
the case of left-hand polarization, modulational and decay instabilities coexist for 3 < 1 — E:'“, *, only the decay

2
. cer ba R . . . .
instability is present for 1 — %—“ < 3 < 1 and the wave is stable for 3 > 1. The corresponding instability

growth rates are shown on Fig. 5 for various values of /3, together with the predictions of the DNLS models.
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Flgu re b: Instability growth rates (modulational and decay) for amplitude el/2 — 0.25,

k= e = 0.0625 at various 3 for right-hand polarization (panels (a}-(c)) and left-hand polarization
(panel (d)), from the primitive MHD equations (solid line), the DNLS equation (24) (dashed line) and a

non-adiabatic DNLS model (dotted line).



(i1) Two-parameter solitons
They form in the nonlinear stage of the modulation instability of the circularly polarized solutions. Rescale £ so
that R; = 1. Mjglhus L found solitary wave packet solutions: b = a exp ifl with real amplitude @ = a(x — vt)

and phase #. The local wavenumber &k = 6, and frequency v = —#&; obey, in a simple case:
8 _ 4(rvg + ko)
(vg + 2k0)1/2 cosh [(z — vt — zq) /8] + Ko
k=ro+(3/0)al 61 =2(rd +vg)'/?

¥ =1+ (3;'{4}{!2 v = —2,!{.0

h.aH

s -

o

oz

Figl.l re 6: Envelope (solid) and real part (dotted) of the above soliton for kg = 0.5, = 1, vy = 0.

IMj;thus and Hada in, Nonlinear Waves in Space Plasmas, eds. T. Hada and H. Matsumoto, Terrapub,
Tokyo, 1007 p. 121



JGR 112, 12101 (2007)



Initial condition - soliton In the presence of a driver the 1D DNLS equation ead to spatio-temporal chaos

Harmonic forcing at k=50.
Very small dissipation

Energy increases and then saturates
—  Abrupt transition —> Second transition

T=100 T=190 T=275

KO spectrum due to
sharp solitons

Problem initially investigated bguti and Nocera, Solar Wind 9, AIP (1999).



Transverse instabilities



Field aligned magnetic filaments with a radius ~ ion inertial length

Observedmagnetic
filamentsin the
magnetosheath behind the
guasi-perpendicular bow

ShOCk(AIexandrova et al. JGR, 2006).

Some of these filaments are
associated with AIC waves.

Two examples of magnetic waveforms (left)
and corresponding hodograms in the plane perperadicul
to the ambient field.



QUESTION:

Are the observed magnetic filaments produced by Alfwave
iInstability or, differently, are they Alfvén vorticesither of MHD
type (Alexandrova et al., 2008)r Of drift-kinetic type(Sundkvist et al. 2005y

This issue is beyond the aim of the present talk.



We here concentrate on transverse Alfvén-wave instigsilat scales
of the order of ion Larmor radius or larger

Previous work are mostly concerned with the case of lymmeous plasmas:

* Investigation of parametric instabilities fofiite amplitudedispersive AW subject
to strictly transverse perturbations with finite waverhars:
- purely growing in time (Kuo, Whang and Lee 1988)
- In the convective case (Kuo, Whang and Schmidt 1988

 Vinas and Goldstein (1991) investigate a similaradion , but also consider
oblique instabilities

Small-scale filamentation is almost insensitive to the value



AW instabilities in thdimit of small (perpendicular)

perturbation wavenumbeamenable to a multiscale formalism,
suitable to address the weakly nonlinear regime.

» Shukla, Feix and Stenflo (1988) and Shukla and St€a®89) derive
envelope equations for AW, KAW, IAW in various contextased on
general formalisngthat usually requires specific conditions).

« Champeaux, Passot and Sulem (1997) derive envelopé@@titom
Hall-MHD and study the effect of longitudinal moduéat which can
arrest transverse collapse.



Envelope dynamics N 3l&hampeaux, Passot & Sulem, J. Plasma Phys. 581663)

Absolute dynamics: initial value pbin T
Convective dynamics: initial value pb in X



V
Notethata ? 2—9

Possible wave collapgénite-time blow up) when r >0

The Nonlinear Schrodinger equation:
Self-focusing and Wave Collapse

C. Sulem & P.L. Sulem

Springer 1999



Schematic Alfvénic
wave front subject to
filamentation
(propagation from left to
right)

(k<< 1)

(from NLS)

Direct numerical simulation
for an AW propagating from
displaying left to right and
showing the front wave
distortion in the region where
the largest wave intensities
(white regions)



RH

LH

k/4 ki4

Existence of large-scale instability strongly sewsito the of the plasma.

May be competing with other instabilities.

NLS equation: filamentation instability leads to wasollapse (finite-time singularity).

Physically:formation of intense magnetic filaments.






eDirect simulation of the convective case is difftc
*Predictions based on NLS are similar in both thevective
and absolute regimes provided time and space atepged
and slow fields adjusted

\We thus resort to the simulation of the absolatsec



Direct numerical simulation of Hall-MHD equations

IC: plane AW + large-scale, small amplitude noise. b=15
Dynamics very close to the predictions of NLS at earhet

Small amplitude wavgNLS regime)

Large-scale instability Large amplitude wave
Intenseamplification small-scale instability
Moderateamplification



Dynamics very close to the predictions of NLS at eamet

008 008
004 004
000 000
(a) (b)
008 008
004 004
000 000
() (d)

A single filament ends up dominating



Schrddinger asymptotics.



(a) Streamlines together with transverse cut for the
longitudinal velocity

(b) Isosurface of|o,| = 035  with plasma it
arrows in a transverse plane. Colors refers to
longitudinal velocity

Formation of intense jets
reaching the Alfvén velocity

Intensification of wave energy
by a factor 120

Transverse size of filaments
lon inertial length









Emergence of the nonlinear structures after a amy linear phase.

The outcome is sensitive to obligue and longituldnoapeting
Instabilities and also to deviations from monochaticicharacter
(e.g. not long enough Alfvén wavetrain).



Effect of oblique instabilities

Effect of large-scale longitudunal instabilities



Filamentation of parallel Alfvén waves in the preseonta

density channel (ductalong the ambient field.
The plasma density inside the duct can be hidingh{density dugtor
lower (ow-density dugtthan the density outside the duct.

D. Borgogno, D. Laveder, T. Passot, C. Sulem & Bilem, Phys. Plasmak; 062302-(1-12) (2008).



Field-aligned density channels

 frequently encountered in the magnetosphere wiheseplay the
role of ducts that guide whistler waves
(see e.g. Karpman and Kaufman 1982, Pasmanik andhf&ragerts 2005,
Stretlsov et al. 2006, 200.7)

e typical density cavities encountered in aurorakd&E@tion
regions where they affect the interaction of Alfweaves with
the plasma, with consequences on the plasma aaterer
(see e.g. Génot, Louarn and Mottez 2004).

« Can also correspond to pressure balanced strgcilmest
aligned with the ambient field, resulting from noirinstability.

» Could also be relevant for the solar corona



Filamentation process is strongly reinforced by a
field-aligned density channel:

o it prescribes th&ansverseharacter omitial perturbations
thus making filamentation phenomenon more robust

e it permits the formation of magnetic filamentshebderate
amplitudein regime where, in its absence, no filament can
form.



Effect of a density channel :r =1+ r_ with

Adds alinear potentiato NLS equation for the wave amplitude

| 1

Other longitudinaly averaged fields:

(up to a constant)



2D NLS equation with linear potential

Four different regimedepending on the attracting/repulsing character of
the linear/nonlinear potentials.

2D NLS equation strongly sensitive to the effect oadditional term
(critical dimension).

For example, depending on the conditiamsattracting potential can either accelerate or
Inhibit the collapse of 2D focusing NLS equation
(LeMesurier et al., Physica D 2003, PRE 2004).



Plane monochromatic AW ilmw-density channel
aligned with the ambient field

Width of the channel is typically half the wavadgh of the most unstable NLS mode

=1.5

Filamentatiorsignificantly faster
and muchmore robust

Strong amplification
(here factor 80 on wave energy)



Transverse magnetic field
at the center of the structure
(_) and at its maximum (---)

0.4F

03k
02k

01k

0.0t
0

50

100

150 200 250

NLS simulation

Hall-MHD simulation

Low-density channel of
10% magnitude.




Longitudinal velocity spirals in both directions
More intense in forward direction (here 0.2 Va)



Longitudinally averaged amplitude in the transverse plane

0.020

0.015

0.010

0.005

0.012

0.010

0.008

0.008

0.004

0.002

Hall-MHD simulation

Integration of focusing NLS with attracting
Potential in the same conditions

Arrest of collapse by attracting potential at cafidimension:
Linear potential isolates a small fraction of thews energy,
insufficient to focus, while

the rest of the energy disperses, then making meatieffects not
strong enough to

produce blowup. This can lead to a stable osciljabeam.



Low-density channel of \
30% magnitude




Filamentation of modulated AW in density dipsh = 1.5

Ultimate formation of longitudinal gradients.
More robust than in homogeneous plasmas.
Earlier saturation due to presence of harmonics

Concentration of AW energy in the density
channel and extension in a longer filament.



Case without dispersion: propagation in density dipf = 1.5

Wave energy displays spiraling structures



=1.5 AW n ahigh-density channel

At the level of the NLS formalism, thenlinearity is focusingwhile the density hump
acts as aepulsing potentialAW is expulsed: formation of a magnetic ring thedadens.

Direct HMHD simulation NLS equation with potential
Transverse magnetic field Intensity in a transverse plane

Transverse profile : —
at increasing tmes R :



Local reduction of the ambient field

In the regions from where the wave is expulsed,
anticorrelation between parallel magnetic field
perturbations and density



=0.3 low-density channel

Nonlinearly defocusing
Repulsing potential

No filamentation
AW is expulsed



=0.3 AW in ahigh-density channel
High -density channel of 10% magnitude

020 T T T T T T T

Region of
strong density

magnetic filament
(amplitude amplified
by a factor 3)

The system evolves towards
NLS equation] a stationary solution.




=0.3 High-density channel of 20% magnitude

Transverse magnetic field
at the center of the structure

(_ ) and at its maximum (---)
0.30 [

0.25}

Hall-MHD

NLS

0 50 100 150 200 250



Conclusion:

The presence of a density channel considerabg§ndsgtthe regime
of formation of Alfvén wave filaments, even if tha@mplitude
saturates at a moderate value

Question:

Is the filamentation instability preserved in thegence of
Landau damping?



Filamentation instability preserved in the presenickandau damping

In a homogeneous plasma: reductive perturbative exgran$ivliasov-Maxwell
equations in the limit of long-wavelength Alfvén wawaipplemented by envelope
reduction (Passot and Sulem, Phys. Plasmas 10, 3914, 2003)

o leads to a NLS eq. with additional diffusive terngorating from Landau damping

 provides conditions on ion-electron temperatut®satemperature anisotropies,
value of for linear instability relatively to large-scale pertutioas.

Nonlinear evolution and influence of density channeéspntly studied with
Landau-fluid modelshat extenchnisotropic Hall MHD by retaining Landau
damping and FLR correctiorfelosure of the fluid hierarchy in a way consistent
with the low-frequency linear kinetic theory).

For the sake of simplicity, electrons assumed &wotfal in Landau fluid simulations.
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High density channeformation of filaments of moderate intensity
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Conclusions |.

Filamentation of dispersive Alfven wavesinhomogeneous

plasmas (density channels) can occur for a braageraf
parameters, leading to stabkleuctures with moderate amplitudes
of solitonic type that survive in the presence of Landau damping.

They could provide an alternative to Alfvén vorticesnterpret the
vortex filaments commonly observed in space plasmas



Conclusions II.

How do thecoherent structureaffect the turbulent
cascades and spectra?

Power laws are not necessarily the signature of cadas

What dominates at scales smaller than the ion gyroradius:
whistlers?
kinetic Alfvén wave®

A proper dissipation should be used for quasi-colliles plasmas:
Collisions are the ultimate mechanism leading to tladization
of dissipated kinetic energy.



